

KNT/KW/16/5202

Bachelor of Science (B.Sc.) Semester—VI (C.B.S.) Examination

PHYSICS

Paper—1

(Relativity, Nuclear Physics and Bio-Physics)

Time : Three Hours]

[Maximum Marks : 50

N.B. :— (1) All questions are compulsory.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (A) What is a frame of reference ? Explain inertial and non-inertial frames of reference. Obtain the Lorentz transformation equations. 5
- (B) (i) Obtain the expression for time dilation. 3
(ii) The mean life of π meson is 2×10^{-8} s. Calculate mean life of a meson moving with a velocity of 0.8 C. 2

OR

- (C) Derive an equation for length contraction of a body moving with velocity approaching velocity of light. 2½
- (D) Obtain an expression for relativistic mass of a moving body. 2½
- (E) Describe the experimental arrangement of Michelson and Morley experiment. 2½
- (F) A particle of mass 10^{-24} kg is moving with a speed of 1.8×10^8 m/s. Calculate its mass when it is in motion. (Give C = 3×10^8 m/s). 2½

EITHER

2. (A) Explain the construction and working of G.M. counter. What is quenching ? How is it achieved in a G.M. tube ? 5
- (B) (i) Obtain an expression for the operating frequency of a cyclotron. 3
(ii) A cyclotron with magnetic field of 2Wb/m² is used to accelerate the protons. At what frequency should it operate ? (Given : $e_p = 1.6 \times 10^{-19}$ C, $m_p = 1.79 \times 10^{-27}$ kg). 2

OR

(C) Derive an expression for the lengths of successive drift tubes of a linear accelerator. 2½

(D) What are the assumptions of the Liquid Drop model ? Explain nuclear fission on the basis of Liquid Drop model. 2½

(E) Write a note on the different types of cosmic rays. 2½

(F) Find the threshold energy for the reaction $_{\gamma}N^{14}(n, \alpha)_{5}B^{11}$.

Given : $m_N = 14.003074$ u, $m_n = 1.008665$ u

$m_{\alpha} = 4.002603$ u, $m_B = 11.009305$ u.

2½

EITHER

3. (A) What is beta decay ? Explain the measurement of energy of a beta particle by a magnetic spectro-graph. 5

(B) (i) Explain the three modes of beta decay. 3

(ii) A nucleus $_{12}X^{26}$ undergoes β^- and then α -decay process. Find the atomic and mass number of the final daughter nuclei after successive β^- and α -decay. 2

OR

(C) Derive the expression for energy of α -particle using magnetic spectrometer. 2½

(D) Explain the origin of γ -rays. How do they differ from X-rays ? 2½

(E) Define 'range' of an α -particle. What are the factors which affect the range ? 2½

(F) A nucleus is in an excited state of energy 70 keV. It emits a β particle first and comes to an energy state of 48 keV and then emits a γ photon to come to ground state. What is the end-point energy of β -decay and energy of the γ photon ? 2½

EITHER

4. (A) What is the basic principle of Electroretinogram (ERG) ? Explain ERG with diagram. 5

(B) (i) What is centrifugation ? Derive an expression for Relative Centrifugal Force (RCF). 3

(ii) The relative centrifugal force is 20,000 and the rpm speed of the rotor is 7500. Calculate the radius of the rotor. 2

OR

(C) Explain working mechanism of sonography with block diagram. 2½

(D) Explain the construction and working of pH meter. 2½

(E) Distinguish between colorimeter and spectrophotometer. 2½

(F) Calculate pH of 0.001M H_2SO_4 assuming complete dissociation. 2½

5. Attempt any **ten** :

- (i) State the postulates of Special theory of Relativity.
- (ii) Write the inverse Lorentz transformation equations for position and time.
- (iii) A particle is moving with a speed of 0.5 C. Calculate the ratio of the rest mass and the mass while in motion.
- (iv) What are magic numbers ?
- (v) Give the classification of elementary particles.
- (vi) Binding energy of ${}_{28}\text{N}^{64}$ is 654.53 MeV. Calculate its binding energy per nucleon.
- (vii) Write the Geiger-Nuttal relation.
- (viii) Define end point energy.
- (ix) What is α -particle tunnelling ?
- (x) What are action potentials of human body ?
- (xi) What is an electrocardiogram ?
- (xii) If the transmittance is 0.2, find the absorbance. 1×10